The 2022 Taitung (Guanshan and Chihshang), Taiwan, earthquake Workshop May 25, 2023, Ohsaki Research Institute, Inc.

Strong Ground Motions during surface-faulting earthquakes

Kojiro Irikura*1 and Susumu Kurahashi*2

*1: Aichi Institute of Technogy/Kyoto University*2: Aichi Institute of Technogy

Summary 2

- 5. We attempted to simulate near-fault ground motions for the 2008 Mw 7.9 Wenchuan earthquake applying the extended characterized source model with the SMGAs and LMGAs.
- 6. Therefore, near-fault ground motions for the Wenchuan earthquake are successfully with significant velocity pulses and permanent displacements at MZQ and SFBfo
- 7. Miyakoshi et al. (2020) found that D_{LMGA} , i.e slip in LMGA, is about 2 times of average slip D given by the scaling relation D versus Mo, i.e. seismic moment.

The obtained D_{LMGA} for the Wenchuan earthquake is less than D_{LMGA} is smaller than the expected value from the D_{LMGA} – Mo relation, suggesting saturation of D_{LMGA} for largre-size earthquakes.