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The 1995 Kobe Earthquake ...
urged 1o revise the B oo
Regulatory Guide for §
seismic safety of A
Nuclear Power Plantsf % v

= The 2007 Chuefsu oki
Earthuake made
furfher impacts and
Japan concerning

&= seismic safety of

®. Nuclear Power Plants,



Today’s Topics

1. Developments of strong motion evaluation after the 1995 Kobe
erthquakes

2. Revised Regulatory Guide (2006) for Reviewing Seismic Design
of Nuclear Power Reactor Facilities

3. Methodology of estimating ground motions from earthquakes

4. Seismic reevaluation (back-checks) of the existing
Nuclear Power Plants based on the Regulatory Guide

5. Expectation for deep boreholes seismic observation

and geophysical exploration from viewpoint of
ground motion evaluation

6. Summary and future direction



1. Developments of strong motion evaluation
after the 1995 Kobe earthquakes



Programs defining the Seismic Hazard in Japan

Long-term Evaluation:
Evaluate probabilities of the next occurrence of large earthquakes

for major active faults and subduction-zones along troughs.

Strong Ground Motion Evaluation
Construct seismic hazard maps, probabilistic and deterministic.

Probabilistic hazard map: predicted likelthood of ground motion
level occurring In a given area within a set period of time.

Shaking map for scenario earthquakes: strong ground motion
from hypothetical source models for specified active faults
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Long-term Forecast (continued)

Next 30 years

Subduction earthquakes
Miyagi-oki 99 %
Nankal Trough 50-60 %

Inland Crustal earthquake
ISTL (inland fault) 14%
most active faults < 5%
Kobe eg. in 1995 0.02-8 %

Inland crustal

Subduction earthquake earthquake
Probability = a/ (a+hb)
e e Max probability for 30 yrs
% n!? 1/100 yr event ~ 90 %
3 b g AT 1/1000 yr event ~ 20 %
1/10000 yr event ~2 %

Now 30 years from now Time Now JI— 30 years from now Time



Probabilistic Seismic Hazard Map

Long-term Forecast
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Probabilistic Seismic Hazard Map (2005)
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Probabilistic Seismic Hazard Map (2005)
- Where have recent disastrous earthquakes happened near Japan ? -
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Framework of predicting strong ground motions
for crustal earthquake scenarios (Deterministic Approach)

(1) Monitoring of Seismic Activity
and Field Survey of Active Faults

(2) Observation of Strong
Ground Motion

Predictability of Earthquakes

Inversion of Rupture Process

Rupture directivity

Macroscopic Microscopic

(Oriter) (Inner)

Empirical approach
Theoretical
Stochastic
Hvbrid

Modeling of Earthquake Source Faults

(Outer source parameters)
(Inner source parameters)
(Extra fault parameters)

Estimation of Green's Functions
(Theoretical Green's functions)
(Empirical Green's functions)
(Stochastic Green's functions)
(Hybrid Green’s functions)

————

(3) Exploration of
Velocity Structures

Imaging of 3-D Structures




Framework of predicting strong ground motions

_ -continued- |
Source Modeling Green’s Functions
\ / \ Hyvbrid /

Modeling of Earthquake Source Faults Estimation of Green's Functions
(Outer source parameters) (Theoretical Green's functions)

(Inner source parameters) (Empirical Green's functions)

(Extra fault parameters) (Stochastic Green's functions)

(Hybrid Green’s functions)

———————— )

Simulation of Ground Motions

(Ground motion time histories)
(PGA. PGV)
(Response spectra)
(Seismic intensity)

Validation by

Historical Records of |
Past Earthquakes

Estimation of Structural and Geotechnical Damage

Estimation of Social Impacts and Losses



Deterministic Seismic Hazard Map
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2. Revised Regulatory Guide (2006)
for Reviewing Seismic Safety of
Nuclear Power Reactor Facilities



Why did “Regulatory Guide” have to be revised ?

[1Background
The previous “Regulatory Guide was made based on the most advanced knowledge
(active fault survey, ground motion simulation based on response spectra, static
seismic-force, and so on) for that day in 1981.

A lot of new findings and knowledge on seismology and earthquake engineering were
accumulated for 25 years since 1981.

Seismic design technology for “Nuclear Power Reactor Facilities” was also rapidly
developed for the last 25 years.

The impacts and lessons from the 1995 Kobe earthquake:

Studies about active faults, seismic source mechanisms, wave propagation ,
earthquake-resistant structures have been remarkably proceeded.

In particular, methodology for predicting strong ground motions from specific sources
have been developed.

Introduction of “PSA (probabilistic safety assessment)” for seismic design of
“Nuclear Power Reactor Facilities” in foreign countries, especially USA.



Basic Policy for Seismic Design -1

Important Facilities from the seismic design points shall be
designed to bear seismic force exerted from earthquake ground
motion and to maintain their safety function, which could be
postulated appropriately to occur very scarcely in the operational
period of Facilities from the seismological and earthquake
engineering standpoints in the vicinity of the proposed site.

Moreover, any Facilities shall be designed to bear the design
seismic force sufficiently which is assumed appropriately for every
classification in the seismic design from the standpoint of
radiological effects to the environment which could be caused by
earthquake.



Basic Policy for Seismic Design -2
(Commentary)

The Design Basis Earthquake Ground Motion “Ss”
shall be estimated deterministically from

the ground motions caused by sufficiently strong
earthquakes.

The existence of “Residual Risk” shall be realized and
minimized as low as practically possible.

(Residual Risk is defined as a risk caused by the effects of the
ground motions that exceed the Design Basis Ground Motion.)



Evaluation of Design Basis Ground Motion 1

1. Evaluate ground motions for the basis of seismic safety
design of facilities as following two types,

(1) “Ground motions for specified sources” at the proposed
sites, that is, site-specific ground motions whose source
to be identified with the proposed sites.

(2) “Ground motions for unspecified sources”, that is,
ground motions whose source not to be identified.

2. Select plural number of earthquakes which are feared
making severe impact to the proposed site, active faults
and subduction earthquakes.

@ Active faults considered in the seismic design shall be
identified as the one of which activities since the late
Pleistocene epoch can not be denied.



Evaluation of Design Basis Ground Motion 1

3. Evaluate ground motion by both methods
(1) empirical response spectra and (2) fault models.

(Commentary)

Evaluation using the fault model method should be
preferred in the case of earthquake whose source is
near the proposed site.

4. Consider uncertainty concerned with the evaluation process
of ground motions.



Deterministic Method and Residual Risk -1

Design basis ground motions are evaluated from specified
sources for given earthquake scenarios with source
models and propagation-path and local site effects and
from unspecified sources with past earthquake data.

Largest possible ground motions are estimated
considering physical limits with uncertainties. They are not
always worst-case ground motions.

Therefore, some residual risk remains.

Design basis ground motions are determined to lead to
the residual risk that is acceptably small.



Deterministic Method and Residual Risk -2

® Exceeding probabilities of the design basis ground motions
for the residual risk is estimated by probabilistic methods
considering all scenarios concerning earthquakes and
ground motions from earthquakes.

® Variability of the ground motions is estimated with standard
deviations of observed data.

® Epistemic and aleatory uncertainties need to be separately
estimated.

® The epistemic uncertainties are reduced by constraints on
propagation-path effects (velocity and Q structure) and local
site effects (rock and soil properties).

Deep boreholes seismic observation and geophysical exploration
contribute to reduction of the epistemic uncertainties.



Points of New Regulatory Guide -1

1. Deterministic approaches are emphasized in evaluating
design basis ground motions (DBGM) Ss’s with
engineering decision.

2. On the other hand, the idea of probabilistic approaches is
taken in the guide.

For example, they request consideration of “uncertainties”
of source parameters and propagation-path and site effect
parameters and calculation of exceeding probability of the
Ss’s, to provide comprehensive information about the
conservatism in evaluating the Ss’s.

3. The basic policy is to adhere the concept of “defense-in-
depth” and to ensure the necessary safety margin.



Points of New Regulatory Guide -2

4. PSA is not directly introduced in the guide.

6.

Reasons: (1) No common understanding exists among
experts concerning the maturity of the probabllistic safety
assessment approach for risk assessment. (2) A number
of issues still remain to be delivered because of lack of
basic data and moreover the safety goal has not been
determined in the NSC at that time.

The risk that may cause serious damage to the nuclear
facilities due to the ground motions exceeding Ss is
defined as “residual risk”. The efforts to minimize the
“residual risk” as low as possible should be made. The

safety review process refers to the exceeding probabilities
of Ss’s.

The next regulatory guide should be revised to introduce
probabllistic approaches in near future.



3. Estimation of ground motions
from earthquakes
based on the “Recipe”



Estimation of Strong Ground Motions

Predicted Strong

_ _ - Ground Motion
Sedimentary Basin :

Amplification due to

Crustal Structure Sedimentary Layers

In Propagation-Path

Seismic Source Fault | Attenuation and/or Excitation in
: Propagation-Path
(Propagation-Path Effects)

Source Effects

(Predicted Ground Motions) = (Source Effects)*(Path Effects)*(Surface Geology Effects)



Recipe for Strong Motion Prediction

Outer Fault Parameters

B Rupture area S is given.

E  Seismic moment Mo from the empirical relation of Mo-S.

B Average static stress-drop Ac_from appropriate physical model
(e.qg., circular crack model, tectonic loading model, etc.)

Inner Fault Parameters

E  Combined area of asperities Sa from the empirical relations of S-Sa
or Mo-Ao.

Stress drop on asperities Ac, based on the multiple asperity model.
Number of asperities from fault segments.

Average slip of asperities Da from dynamic simulations.

Effective stress for asperities o, and background area o, are given.
Slip velocity time function given as Kostrov-like function.

Extra Fault Parameters

™ Rupture nucleation and termination are related to fault geometry.



Quter Fault Parameters
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Source Characterization

Based on
heterogeneous slip by
waveform inversion...

Quter Fault Parameters

Inner Fault Parameters:

size and stress drop of asperities

[ ] i
S(=LW), Mo, AG,

|
Sa Ac, , etc
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2008 lwate-Miyagi Nairiku Earthquake (Mw 6.8,

Characterized Source Model
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Characterized Source Model

2007 Noto-Hanto Earthquake (Mw 6.7)

3730

‘\ ‘r"
Aﬂtﬂh ck B
¢ _-* ISE005
H A
Maihishoc, Aftershock A

IS%?M/
f;ﬂﬂ_z}

ISKo04

Asperity-1 i Asperity-2
ISKg6 i; E 0 L\ Sllp (m)
E — -
A
s,
(0
* 00" o
o 01036'3() g 10
©
3
c15
.
R
O 20
o 5 10 15 20
Distance along Strike (km)

Vel(ecm/s) Acc. (cm/s/s)

Disp.(cm)

Comparison between Observed
and Synthetic Motions

ISK003 NS

[ T
0 obs
L
C | ! | ]
0 10 20 30
T T T
0 [ obs
syn
20+ | : -
0 10 20 30
Time(sec)

Black: Observed
Red : Synthetic

N ISK003 EW

£ " obs ' ' ' ' A

s 0

N~ - -

g -500 [ syn 7

31000 - | . | o]

< 0 10 20 30

/\u? O'Obs' Iw ]'A ! N

E_ - syn 1

o -50F =

= o | ! | ]
0 10 20 30

L) I L) I L)

E 0 -—o—bf\._/\va\/\/v\/\/\/\v-

= YN A A AN

5 '20 — N | N | X 1
0 10 20 30

Time(sec)



4. Seismic Reevaluation (Back-checks) of
the existing Nuclear Power Plants
based on the Regulatory Guide



Re-evaluation of Seismic Safety Design of Nuclear
Facilities, so-called “Back-checks”

* NSC(Nuclear Safety Commission of Japan) asked governmental intendances
to re-evaluate seismic safety design of all of existing nuclear power plants
(NPP) for confirming their integrity on September, 2006, just after “the New
Guide” was in effect.

* NISA(Nuclear and Industrial Safety Agency, METI), promptly required
electric companies to re-evaluate seismic design of existing NPP’s
according to “the New Guide”

 The electric companies started geological survey and reevaluation of design
ground motions for getting back-checks of the existing NPP’s.

» The Niigataken Chuetsu-oki earthquake on 16 July, 2007, occurred very close
to the Kashiwazaki-Kariwa Nuclear Power Plants at that time.



Flow of Seismic Reevaluation
According to New Seismic Regulatory Guide

P
<

A. Geological survey, evaluation of active faults

B. Evaluation of design basis ground motion Ss

Site specific ground motion by Ground motion without
identifying earthquake source identifying earthquake source
v
Evaluate ground motions Items to be
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* x o seismic safet
Ground motions by Ground motions by S . y
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C. Evaluation of seismic safety of facilities Earthquake
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Accompanying events
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onents and piping
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Accompanying events
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Example of Seismic Reevaluation
-The Kashiwazaki-Kariwa Nuclear Power Plant-

Selected Active Faults and Folds Inland and Offshore
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Source Model of F-B Fault

1. Asperity model was formulated based on the recipe for strong motion prediction

by Headguarters for Earthquake Research Promotion (2008)

(Fault length: 27km x width: 20km)

g dweciien (km)

sinke direction (km'

k- o B

hll.ll..

kW

R

o B P

il r

PR ERTRING L

I''km

Satamic invession of NCO EQ (MG.8)
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2. Source fault model was formulated
by extending fault length of the asperty model
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based on the geological survey result
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Acceleration Time Histories from the F-B Fault Earthquake

For Unit No.1 - No.4

For Unit No.5 =No.7
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5}

Source Model of Naoka Heiya Sei-en Fault

Three Faults (Katagai, Kihinomiya, and Kakuta-Yahiko) are connected.

Parameters to be considered with uncertainty

Fault length

Activity of Katakai fault is standard case, and -

consider fault interlocking with its surrounding
faults (Kihinomiya fault, Kakuda-Yahiko faulf)

Fault dipping angle

50 deq. Is the standard case according to
the evaluation of HERP, and 35 deq. is also

taken infto account as an uncertainty.
The number & location of asperity
Upper-center position of the fault plain is the
standard case, and lower-center is also

considered.

The amount of stress drop & avg. slip
1.5 times larger than recipe is considered.

Rupture starting point

Place which rupture proceed toward the site is the standard case,
and boundary of asperity is also considered as an uncertainty

TOKYD ELECTRIC PORVER DOMPYNY




Acceleration Time Histories from the Nagaoka-Heiya Sei-en Fault

For Unit No.1—=No. 4 For Unit No. 5 = No.7
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W Response Spectra for the Design-basis Ground Motion
(Free surface of base stratum )
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Ss-1H (F-B fault, response spectra)

Ss-2EW (F-B fault, fault model method)

Ss-3H (Nagaoka Plain Western Rim Fault Zone, response spectra)

Ss-4EW (Nagaoka Plain Western Rim Fault Zone, fault model method)

S2

Estimated ground motion on the free surface of base stratum at the time of the
Niigata-Chuetsu-Oki Earthquake



5. Expectation for deep boreholes seismic
observation and geophysical exploration
from viewpoint of ground motion evaluation



Expectation for deep boreholes seismic observation
and geophysical exploration-1

® New technology has been developed for seismic observation
In deep boreholes:
High-precision and broad-band velocity sensors with super
high heat-resistance available for 3000 m deep.
Multiply-connected sensors in a deep borehole.

® Progress of advanced technology is expected for not only
measuring seismic signals but also sampling, monitoring,
and recording other geophysical data.



Expectation for deep boreholes seismic observation
and geophysical exploration-2

® Detailed 3-D velocity structure models with damping factor
of each layer, combining vertical array and horizontal array
observation

® Epistemic uncertainties are reduced in estimating
propagation-path and local-site effects based on
the detailed velocity models, and then ground motion
variability becomes smaller.

Examples from seismic reevaluation:

Influence of irregular structures on ground motions
near the Kashiwazaki-Kariwa Nuclear Power Plant
and near Hamaoka Nuclear Power Plant



Case of the Kasiwazaki-Kariwa Nuclear Power Plant -1

Overview of seismic observation points at the KKNPP site

On the foundation basemat
and mezzanine floor

Turbine Buildi
On the foundation basemat e
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Case of the Kasiwazaki-Kariwa Nuclear Power Plant -2

Overview of the event (2)
{Comparison of the ground motions between each units)
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Case of the Kasiwazaki-Kariwa Nuclear Power Plant -3
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Modelling of Source Fault and Ground Structure

Source fault model Cross section of geological layers
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Case of the Kasiwazaki-Kariwa Nuclear Power Plant -4

2.3 Reevaluation of Seismic Safety of KK NPS

W Analysis of Amplification of Ground Motions by Underground Structure

relationship

Unit 5 reactor buildin
—] gL.Ini'l1 motions m%&

rmacion
Ground surface Depth of embedding

buildin
pth of

Free surface of base stratum
(GL - about 150 to 300m)

[Factor 3] e T
Amplification due to -
old folding structure 9

The side of unit 1: e,
about times [ s .

. h - ) Unit 1: about 0.4 times
fhe ETh::Jtu‘;“tti:;n W AR or 21 i Unit 5: about 0.6 times
Effects of non-uniform
(GL - about 4 to Bkm) formation of deep
ground foundation
/ About times
<o [Factor 1]
% Source effects
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Unit 2 I o
Unit 3 ¢
Unit4 +—

Unit 5 !

Case of the Hamaoka Nuclear Power Plant -1

Acceleratlons at Base Mats from 2009 Suruga Bay Earthquake
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Case of the Hamaoka Nuclear Power PIant -2 =

— S — e —

Acceleration Response Spectra at Base Mats from 2009
Suruga Bay Earthquake (Mw 6.2)
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Case of the Hamaoka Nuclear Power Plant -3

S wave Velocity Profiling using Offset
VSP
INn the Hamaoka:NPP_. wesa ¢
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Case of the Hamaoka Nuclear Power Plant -4

Map showing Location of Nuclear Power Reactor Units and
S wave Velocity Profiling using Offset VSP
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Deep Boreholes Seismic Observation and
Geophysical Exploration  After NISA (2010)

S wave profile
by S-wave logging
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Separation of Up-going and Down-going Waves
In Boreholes Using Deconvolution Technique
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We can estimate the velocity and Q factor of seismic waves propagating in
borehole separating upgoing and downgoing waves using vertical array data.
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Evaluation of Heterogeneities of Velocity Structures

B Strength pf Random Velocity Fluctuation

Based on PS logging at Monju site
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Expectation for deep boreholes seismic observation
and geophysical exploration - 3

Improvement of detectability and hypocenter determination of
earthguakes

—>Upgrading of active fault investigation and source model
studies

Example:
Ground motions from specified and unspecified sources



Aftershock Distribution of the 2007 Niigata-ken Chuetsu-oki
earthquake from the JMA Unified Catalogue
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Aftershock distribution
by on-land and ocean-bottom
seismometers
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Expectation for deep boreholes seismic observation
and geophysical exploration - 4

Introduction of earthquake early warning to shut-down
systems of reactors

- Gain time of more than 2 seconds putting borehole sensors
of 3 km deep.

Example:

For an earthquake with hypocentral distance of 10 km, P
wave travel time is about 1.4 seconds (10 km/6 km/s + 3 km/4
km/s) and S wave arrival time is about 4.8 seconds (10
km/3km/s + 3 km/2 km/s), then S-P time is about 1.4 seconds.
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Economical Gain due to Damage Mitigation versus Gain Time
by EEW System: Example of Semiconductor Factory
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6. Summary and Future Directions -1

. National Seismic Hazard Maps in Japan have been made by
probabilistic and deterministic approaches, integrating
advanced knowledge about Earth sciences, engineering,
and social sciences related to earthquakes and seismic
disasters since 1995 Kobe earthquake.

. Ground motions from earthquakes caused to specified
source faults are evaluated using the “recipe” proposed by
the scaling relations of the outer and inner fault parameters.

. Ground motions from the Niigata-ken Chuetsu-oki (NCO)
earthquake are well simulated with the characterized source
models as long as the source fault are specified by geo-
morphological and geological surveys.

. Design basis ground motions for seismic safety of nuclear
facilities in Japan have been evaluated using deterministic
approaches as long as fault modeling is appropriately made.



6. Summary and Future Directions -2

5. Deep boreholes seismic observation and geophysical
exploration contribute upgrading of ground motion, reducing
epistemic uncertainties by more constrains on propagation-
path and local site effects.

6. Upgrading of numerical simulation methods of ground
motions is inevitable to avoid the ergodic hypothesis and to
reduce standard deviation of ground motion variabllities, In
order to introduce probabilistic approaches in revision of the
next regulatory guide.
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