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A NOTE ON THE RAYLEIGH HYPOTHESIS 
AND THE AKI-LARNER METHOD 

BY FRANCISCO J. SANCHEZ-SESMA, MICHEL CAMPILLO, AND KOJIRO IRIKURA 

The seismic response of laterally irregular stratified media has been studied by 
many authors (for recent reviews, see, e.g., S~nchez-Sesma, 1987; Aki, 1988). 
Significant advances have been obtained since the pioneering work of Aki and 
Larner (1970). In their method, the diffracted and refracted fields are represented 
by superposition of plane waves, including inhomogeneous waves, propagating in 
many directions. The total motion is obtained through integration over horizontal 
wavenumber. Under the assumption of horizontal periodicity of the structure, the 
integral is replaced by an infinite sum. Truncation of this sum and spatial Fourier 
transformation of boundary conditions lead to a system of linear equations for the 
complex coefficients of the horizontal wavenumber expansion. The Aki-Larner 
discrete wavenumber method has found many applications in seismology, due 
mainly to its flexibility to model elastic wave fields (see e.g., Bouchon, 1973; Bouchon 
and Aki, 1977a, b; Bouchon, 1979; Bard and Bouchon, 1980a, b; Bard, 1982; Bard 
and Gariel, 1986). Its major disadvantage, namely the difficulty to model wave fields 
near very steep interfaces, has been corrected by Bouchon (1985) and Campillo and 
Bouchon (1985), who used a single-layer expansion of the fields, similar to the one 
used by S~nchez-Sesma and Esquivel (1979). Bouchon and Campillo constructed 
the full-space Green's function by discrete horizontal wavenumber summation. In 
their treatment, the sources are located along the interface and the truncation of 
the sums guarantees a regular field representation everywhere. On the other hand, 
Kawase (1988) used a discrete wavenumber representation for the Green's function 
and a rigorous boundary element method formulation. He carried out analytical 
integrations in the boundary elements and his results for the surface response of a 
semicircular canyon on a half-space are in excellent agreement with the analytical 
solution for S H  waves (Trifunac, 1973) and with numerical results for P, SV, and 
Rayleigh waves (Wong, 1982; S~nchez-Sesma et al., 1985; Dravinski and Mossessian, 
1987). 

The failure of the original Aki and Larner (1970) method to accurately represent 
wave fields close to large-slope interfaces has been attributed to the limitation 
imposed by the so-called "Rayleigh hypotesis," which consists in representing the 
diffracted fields, say, in an irregular surface half-space with an integral in the 
horizontal wavenumber which includes downgoing waves and inhomogeneous plane 
waves. That integral does not include explicitly upgoing waves, therefore this fact 
has been traditionally considered the cause of the failure (see, e.g., Aki and Richards, 
1980). 

In this note, we show that the Rayleigh ansatz is quite good and that the reasons 
for the failure lie elsewhere. They are of numerical nature. Our purpose in this note 
is to contribute to a better understanding of this powerful technique. In what 
follows, we consider the problem of incident plane SH waves upon a semicircular 
canyon on the surface of a half-space and write the Trifunac (1973) exact solution 
as an integral in the horizontal wavenumber. The diffracted part of the solution is 
represented with explicit downgoing waves plus inhomogeneous waves. This makes 
clear that upgoing diffracted energy admits a representation in terms of inhomo- 
geneous waves only. 
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EXACT SOLUTION 

Consider the semicircular canyon of radius a on the surface of a homogeneous, 
isotropic, elastic half-space shown in Figure 1 and assume incidence of harmonic 
plane S H  waves with incidence angle 00. In this case, the equation of motion for 
the ant iplane displacement v is given by 

(~2 v 02V 
ax  2 + az  2 + q2v = O (1) 

where q = ~/~,  co = circular frequency and fl = shear-wave velocity. Free-boundary 
conditions imply zero normal  derivative at the irregular surface. This  and the 
Sommerfeld (1949) radiat ion condit ion for the diffracted field are fulfilled by the 
exact solution (Trifunac,  1973) which is given by 

v -- v i + v r - 2 ~ bmHm(1)(qr)cosmO (2) 
m=0 

w h e r e  v i ' r  = e x p ( i k o x  • i'yoZ) are the incident and reflected waves for the free-field 
solution (it is assumed here and hereaf ter  tha t  the t ime dependence is of the form 
e-i~t),  ko = qcos00, 70 = qsin0o, r = (x 2 + z2) 1/2, tan0 = z / x ,  bm = t m i m c o S m O o J ' m ( q a ) /  
Hm(1)'(qa), ~rn = Neumann  factor (=1 if m = 0; = 2 if m > 0), Jm("  ) = Bessel function 
of the first kind and order m and Hm(1)( • ) = Hankel  function of the first kind and 
order m. The  primes mean derivative with respect to the argument.  This  exact  
solution has been computed by Tr i funac  (1973) up to a normalized frequency of qa  
= 3~. An asymptot ic  evaluation for higher frequencies (for a related problem of 
electromagnetic waves) is due to Franz (1954) who discovered the so-called creeping  
waves. These  waves are included in the diffracted par t  of the field and have been 
recently computed by Kawase (1988). 

SOME HORIZONTAL WAVENUMBER INTEGRALS 

It  is well known tha t  the Hankel  funct ion of zero order can be wri t ten by means 

of (Lamb, 1904) 

Ho(1)(qr ) = _1 e x p ( i k x  + i'yz) --,dk (3) 
7r ~ "y 

where ",/-- (q2 _ k2)~/2, I m ( ~ )  >= 0 and z _>- 0% This  equation represents  a cylindrical 
funct ion as a superposit ion of plane waves in terms of the horizontal  wave number.  
It  is possible, through direct derivations of equation (3), to show tha t  
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FIG. 1. Geometry of the problem. 
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1 f_~ { (~ -~-~)m ( k ) } e x p ( i k x + i ' y z ) - - . ( 4 )  Hm(1)(qr)cosrnO = ~ + 7 7  - i m d k  
q 

It is also possible to obtain this expression from an integral representation of 
Hankel function (see equation (8), of Watson, 1958). A similar representation has 
been used by Scheidl and Ziegler (1978). 

A very interesting aspect arises from this integral representation. It is easy to 
show that the left hand side of equation (4) satisfies the reduced wave equation and 
the free-boundary condition at 0 = 0, ~r, except at r = 0 because of the singularities 
of Hankel function. That  the right-hand side is also a solution is clear, but the 
fulfillment of zero normal derivative of the integral at z = 0 is not evident. It is 
convenient to note that the expression inside brackets in the integrand is an integer 
polynomial of order rn in the horizontal wavenumber k. Therefore, the boundary 
condition at z = 0 is satisfied in the dis tr ibut ion sense because 

--in k n e x p ( i k x ) d k  _ d%(x)__ 
2~r ~ d x  ~ (5) 

where 5 (.) = Dirac delta function and n is an integer. 

THE EXACT SOLUTION AS AN INTEGRAL IN THE HORIZONTAL WAVENUMBER 

From equations (2) and (4) it is possible to write the exact solution as 

~_ c ~  

v = exp( ikox  - i%z)  + A ( k ) e x p ( i k x  + i ' yz )dk ,  (6) 

where z _-> 0 ÷, and 

A ( k )  = 5(k - ko) - - 1  F~ bm + V -1. 
m=0 

(7) 

This expression shows that the diffracted part of the solution can be written in 
terms of explicitly downgoing waves plus inhomogeneous waves. This makes clear 
that the upgoing diffracted field admits a representation in terms of only inhomo- 
geneous waves. The complete evaluation of this part of the solution requires dealing 
with infinite integrals or, if the periodicity is invoked, with infinite sums. It seems 
convenient at this point to mention that, for a related problem, Millar (1973) 
established the completeness of the set of plane waves and showed that there is "a 
linear combination of elements of the set that converges on the boundary to the 
prescribed values, in the mean square sense as N--~ ~." Furthermore, he established 
that at points not on the surface, "the expansion converges uniformly to the sought 
solution whether or not the Rayleigh hypothesis is satisfied." 

CONCLUSIONS 

The difficulty of the Aki and Larner (1970) discrete wavenumber method to 
accurately represent wave fields close to large slope interfaces is due to the very 
slow convergence associated to this representation. The Rayleigh ansatz is quite 
good. We illustrated this fact with one of the few problems that has an exact 
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solution and admits a relatively simple integral representation. In this note, we 
have shown that this integral contains everything and that the locally upgoing 
energy is represented by inhomogeneous waves. 

The methods of Bouchon (1985), Campillo and Bouchon (1985), and Kawase 
(1988) are pointed in the appropriate direction as they explicitly include upgoing 
waves and, in practice, solve the problem. However, in the search for more efficient 
techniques, it seemed appropriate to point out a rather subtle problem and contrib- 
ute to a better understanding of a powerful technique. 
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