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HIGH-FREQUENCY SEISMIC WAVE RADIATION FROM 
ANTIPLANE COHESIVE ZONE MODEL AND f~a~ AS SOURCE 

EFFECT 

BY HIROYUKI FUJIWARA AND KOJIRO ~RIKURA 

ABSTRACT 

While a high-frequency cutoff, fmax, is widely observed in strong- 
motion seismic data, there is no consensus on whether it is due to 
source processes or to attenuation and scattering of high-frequency 
radiation in the crust or near the surface. To investigate the ability of 
source processes to control fmax, we use a standard antiplane crack 
propagation formalism to numerically model the effect of rupture nucle- 
ation and arrest on high-frequency radiation based on a simple physical 
hypothesis, a slip-weakening model. We model rupture arrest due to 
three types of inhomogeneity: (1) a strong portion of rupture medium 
(barrier); (2) a drop in the pre-existing stress distribution of rupture 
medium; and (3) a finite length of unruptured medium (asperity) lying 
between previous ruptures. For cases (2) and (3) high frequencies fall off 
more steeply than ~ -2 ,  and fmax cannot be properly defined. For case 
(1), we find that fmax = VfLflLj 2, where Vf is the final crack velocity, Lf 
is the final rupture length, and L i is the initial crack size. We extrapolate 
this result to the rupture for a three-dimensional model and try to 
explain observed fm~x" If we assume that an earthquake is a single 
crack, Li is large for a large earthquake. However, if we assume that an 
earthquake is made up of set of cracks and asperities, fmax will be 
determined by the interaction of small cracks and barriers. If the distri- 
bution of these cracks and asperities is independent of source size, then 
fmax will be nearly constant for all earthquakes. 

INTRODUCTION 

Using observations of strong ground motions near seismic faults, Hanks  
(1982), Gusev (1983), Papageorgiou and Aki (1983), Faccioli (1986), and 
Papageorgiou (1988) observed an upper limit on the frequency of acceleration 
spectra, f~ax" It is controversial whether  f~ax is due to source processes 
(Papageorgiou and Aki, 1983) or to at tenuat ion and scattering in the crust or 
near the surface (Hanks, 1982). Observed seismic waves are affected by attenu- 
ation and scattering and have fmax path due to such effects (e.g., Hanks,  1982). 
However, Fuj iwara et al. (1989), Faccioli (1986), Umeda  et al. (1984), and Aki 
and Papageorgiou (1988) reported that  fmax s°"rce due to source processes exists 
by eliminating the local-site and path effects from observed data. According to 
their studies, fmax S°urce is nearly constant or slightly depends on ear thquake 
size. In this article, f~ax refers to f~a~ S°urce. 

In order to explain fmax, it is assumed that  near the crack tip there is a 
cohesive zone that  weakens stress concentration at the crack tip. The cohesive 
zone is introduced by considering a slip-weakening model. Based on the experi- 
ments of rock rupture,  Ohnaka et al. (1986) and Okubo and Dieterich (1984) 
reported that  the critical displacement De, which is one of the parameters  in the 
slip-weakening model and relates to the size of the cohesive zone, depends on 
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the geometrical shape and the roughness of the fault plane. The greater the 
roughness is, the larger D c is. Using a rupture velocity V and a cohesive zone 
size L, Papageorgiou and Aki (1983) and Aki (1985) showed that  V, L, and fmax 
have the following relation: 

fm,x = V/L. 

They obtained this relation, however, under static conditions and did not 
consider the dynamic properties of V and L. In this study, fmax is simulated 
under dynamic conditions. 

Another important point is that  seismic waves from ear thquakes have been 
observed to follow the scaling law predicted by the ~0 -2 model. It is necessary to 
investigate whether  or not the seismic radiation from each simulation follows 
the scaling law of the w-2 model. As the fmax discussed in this article means 
the cut-off frequency in the o~-2-model, if the radiated seismic waves do not 
follow the o~-2-model, we can not discuss the fmax for such models. 

The rupture propagation is simulated, using an antiplane shear crack. Nu- 
merical simulations of rupture propagation have been carried out by many 
researchers. In 2-D crack studies, Das and Aki (1977a) used Hamano's  criterion, 
and Yoshida (1985) used Irwin's criterion. In 3-D crack studies, Day (1982) 
simulated the rupture process with a slip-weakening criterion, while Miyatake 
(1980a, b). Virieux and Madariaga (1982), and Das (1981) used a maximum 
stress criterion. Furthermore,  Das and Aki (1977b) simulated rupture propaga- 
tion for a 2-D inplane barrier  model and Das and Kostrov (1983) for a 3-D single 
asperity model. The method of simulation used in this article is equivalent to 
that  of Andrews (1985). Andrews (1976a, b, 1985) emphasized rupture propaga- 
tion, neglecting the effects of rupture arrest  on seismic radiation. Here we 
account for both the growth and the arrest of the rupture.  

Inhomogeneities of fault planes affect the radiation of high-frequency seismic 
waves. In this article, crack propagation and arrest  are simulated for three 
cases of inhomogeneities: case 1: a strong portion of rupture medium (barrier); 
case 2: a drop in the pre-existing stress distribution of rupture medium; and 
case 3: a finite length of unruptured  medium (asperity) lying between previous 
ruptures. The properties of high-frequency seismic waves radiated from each 
inhomogeneity model are studied from the simulated results. 

The main purpose of this article is to demonstrate a source model that  
explains both the o~ -2 scaling law and the cutoff frequency fmax" 

SLIP-WEAKENING MODEL AND QUASI-STATIC CRACK 

A crack in a perfectly elastic body creates a 1 /v /x  stress singularity with x 
being the distance from the crack tip. Barenblat t  (1959) and Ida (1972) showed 
that  the singularity can be eliminated by assuming the stress to be a function of 
the displacement in the region of the crack tip. Ohnaka and Yamashita  (1988) 
gave the following relation, based on laboratory experiments: 

7 = (% - Tf)[1 + a log(1 + /~Au)]exp( -~Au)  + rf, (1) 

where % is initial stress, ~f is dynamic frictional stress, A u is displacement, 
and a, /3, and y are constants. This equation eliminates not only the stress 
singularity in the vicinity of a crack tip but  also the singularity in acceleration. 
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We have approximated (1) with the following equation, which is equivalent to 
the slip-weakening model of Andrews (1976a, b) (Fig. 1). 

T = TO - -  T f ,  A U  ----- 0 

= T u - (T .  - T f ) "  A u / D c , O  < a u  <_ De,  

= T f ,  AU > D e (2) 

where T u is yield stress, To is initial stress, 7f is frictional stress, D e is critical 
displacement, and A u is displacement. Ohnaka et  al. (1987a, b) confirmed from 
analysis of experimental  data that  ru, T[ and Dc can be regarded constants 
during rupture propagation. 

If the slip-weakening model is assumed, a crack whose size is less than 2 L~ is 
stable. L c is determined from the parameters  in the slip-weakening model. The 
quanti ty  G o = De( % - T f ) / 2  is defined from equation (2) and provides a rupture 
criterion. G O is the maximum value of the energy stored per unit  area of the 
cohesive zone. If the crack is small and the energy stored per unit area of the 
cohesive zone is less than Go, rupture  does not nucleate. In this article, such a 
crack is called quasi-static. An upper bound on the quasi-static crack length 2 L~ 
exists and L c is regarded as the maximum length of the static cohesive zone 
size. 

Solving the following equation, we can obtain L~ for the antiplane shear 
crack. 

O2AU 0 2 A u  
- - +  - 0  

OX 2 Oy 2 

OAU 
# 

Oy 

A u  = O, 

OAu I 
lim # - -  

e-~o Oy L + e  

= % -  T o -  (T u -  T W ) ' A u l D  c, 

-~ T u -- T O 

I x l  <_L 

Ix  I > L (3) 

METHOD OF COMPUTATION 

We consider a two-dimensional antiplane shear crack (Fig. 2). The fault plane 
is taken on the x - z  plane. The crack is infinite along the z axis and 
symmetric about the z axis. 

r~ Tu 

.kJ 
r.~ 

To 

r~  

! 

Dc Slip 

Fro. 1. Relations between stress and slip in our calculation. 7 u, To, and Tf are yield stress, initial 
stress, and frictional stress, respectively. D c is critical displacement. 
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Y 

FIG. 2. Antiplane shear crack with cohesive zones. The shaded areas are cohesive zones. The 
crack is infinite along the z axis and symmetric about the z axis. 

The  d i sp l acemen t  /x u sa t is f ies  

1 0 2 A u  0 2 A u  0 2 A u  
- -  - -  - I f "  - -  

132 cg t 2 c3 x 2 O y2  " 
(4) 

The  b o u n d a r y  condi t ions  for (4) a re  

OAu 
A r  = tL O y = r f -  %,  inside the  c rack  

A r = r u - r o - ( %  - r f ) A U / Dc , inside the  cohesive zone 

A u = 0, outs ide  the  c rack  (5) 

and  the  in i t ia l  condi t ions  a re  

A u ( x , o , o )  = aUo(X) 
= (6) 

where  A u is d i sp lacement ,  Ar  is s t ress  drop, ~ is shea r -wave  velocity,  Tf is 
f r ic t ional  s tress ,  r u is y ie ld  s t ress ,  r o is in i t ia l  s t ress ,  and  AUo(X ) and  A r o ( X  ) 

are  the  d i sp l acemen t  and  the  s t ress  drop of the  in i t ia l  crack,  respect ive ly .  
The  b o u n d a r y  condi t ions  (5) a n d  in i t ia l  condi t ions (6) a re  not  enough  to solve 

d i f fe rent ia l  equa t ion  (4), as  t h e y  do not  include in fo rma t ion  abou t  the  locat ion 
of the  c rack  t ip.  A r u p t u r e  c r i te r ion  g ives  th i s  in fo rmat ion .  The  c r i te r ion  we use  
is g iven  by  G > Go, ba sed  on the  s l i p -weaken ing  model .  Th is  c r i te r ion  is based  
on an  ene rgy  ba l ance  and  is e q u i v a l e n t  to the  Gr i f f i th  cr i ter ion.  

F r o m  the  d i f fe ren t ia l  equa t i on  (4), we ob ta in  

 u(x,y,t) 

2 f / s g ( x , y , t ; x , , O , t , ) A r ( x , , O , t , ) d x ,  d t ,  ' 
# 

(7) 
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where 

g ( x , y , t ; x ' , O , t ' )  = 
H { ( t - t ' ) -  [ ( x -  x') 2 + y211/9"/~} 

2 7 r V / ( t -  t')2 - { ( x -  x')2 + y2} /~  2 
(8) 

and S is the region such tha t  t - t' < I x - x' ] / ~. 
Discretizing (7) we obtain 

Alt(  XM, O, tN) 

J. L N 
= E E AT(xi,O, t j )g(xM,  tN; xi, tj), 

7r~ i=1  j=l  
(9) 

where 

&x At 
= fxi+-~- f t j + ~  

J ~x ]. At g(XM'O' tN; x',O, 
xi- --~ tj 

t' ) dx dt'. (10) 

When we take A x and A t such tha t  A x = ~A t, then 

a U(XM, 0, 
1 L N 

= - -  E E AT(xi,O, t j )g (xM,  tN;xi ,  ty) 
7r/t i=1  j = l  

1 
+ Ar(XM,O,  t N ) g ( x M ,  tN;XM,  tN). (11) 

If we know ~ u  and 47 for all t ime t < tN_l, the first term of the right side of 
(11) is known, and (11) gives the relation between AU(XM, 0, ty) and AT(XM, 0, 
tg). Adding this equation to equation (5), which is obtained from the slip- 
weakening model, we can solve for A u and A7 at time t N. Then we have to 
determine whether the point (x M, 0, tN) is inside the crack, in the cohesive 
zone, or out of the crack. The slip-weakening criterion gives the information for 
this judgment. 

Theoretically, we should take the quasi-static crack whose size is 2 L c as the 
initial conditions. However, if we use this critical crack, too much time is 
consumed before the rupture starts. We therefore use a crack size slightly 
larger than  L c in the initial conditions. 

MODELS FOR COMPUTATION 

Strength and initial stress are inhomogeneous on fault planes. High-frequency 
seismic waves are radiated when the rupture velocity changes rapidly due to 
these inhomogeneities (Madariaga, 1977; Yamashita,  1983). In this article, 
these inhomogeneities are classified into three cases. For each case, the rupture 
propagation and arrest of a crack with a cohesive zone is simulated and the 
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change of the rupture  velocity, the size of cohesive zone, and the seismic wave 
radiation are investigated. We can regard each case as a single ear thquake or 
as components of an earthquake.  

In case 1, there are regions where the strength is very high and where the 
strength is relatively low. The regions of high strength are called barriers. 
When a crack nucleate in a region of low strength and the crack tip reaches a 
barrier, the rupture propagation temporarily or permanent ly stops. We assume 
here that  the strength of the barrier  is infinite. 

In case 2, the strength is uniform, however the prestress is inhomogeneous. 
We assume there is a region of high initial stress surrounded by regions in 
which the initial stress % is equal to the frictional stress rf. The rupture starts 
at  the high prestress region and the rupture  propagates into the low prestress 
region. 

In case 3, a region where strength and prestress are high exists surrounded 
by regions where strength and prestress are very small. This means that  an 
unbroken region is left within a broken region. This unbroken region is an 
asperity. In our calculation, r o = T f  and strength G = 0 are assumed out of the 
asperity. This model is proposed by Rudnicki and Kanamori  (1981). 

RESULTS 

Ini t iat ion o f  Ru p t u r e  

The rupture starts spontaneously in all cases, the rupture process is shown in 
Figures 3, 4, and 5. The rupture  velocity is slow at first and gradually 

CASE 1 
AT 4 o  

2o 6~ x o 2'0 8~ 

FIG. 3. Plots of AT(X, t) and Au(x, t) for the barrier model (case 1). The region for X > 65 is a 
barrier. 
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CASE 2 
&~ Au 

t 

1121 

i i 

20 45 X 20 45 X 

FIG. 4. Plots  of At(x,  t) and  Au(x,  t) for t he  p res t ress  d iscont inui ty  model  (case 2). r o = ~rf in the  
reg ion  for X > 45. 

CASE 3 
AT ~U 

t 

--BO - 4 0  0 40 80 X - 0 - 0 0 40 80 X 

FIa. 5. Plots  of At(x,  t) and  Au(x, t) for t he  asper i ty  model  (case 3). The region for - 2 0  < x < 20 
is asperi ty .  The  reg ions  for x < - 4 0  or x > 40 are  unb roken  regions.  
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accelerates to the shear-wave velocity. The cohesive zone size is largest at the 
beginning of rupture propagation. As the crack grows, the cohesive zone size is 
smaller in inverse proportion to the crack size (Fig. 6). 

Stopping of  Rupture 

Case 1 (Barrier Model). When the crack tip reaches a barrier, the rupture 
stops. In the calculated example used here, the rupture propagates at nearly the 
shear-wave velocity just  before the crack tip reaches the barrier  and suddenly 
stops, as shown in Figure 3. Therefore, the rupture velocity has a discontinuity 
at this point. The size of the cohesive zone becomes one third of the initial 
cohesive zone size just  before the crack tip reaches the barrier. From this 
calculation we find that  the size of cohesive zone is inversely proportional to the 
crack size. 

Case 2 (Prestress Discontinuity Model). The results for this case are shown in 
Figure 4. The rupture velocity is nearly the shear-wave velocity just  before the 
crack tip reaches the region where ro = r f .  After the crack tip crosses into that  
region, the rupture  velocity in the calculated example decelerates to one third of 
the shear-wave velocity. We did not continue the calculation for the complete 
arrest of rupture to save computational time; however, by calculating rupture 
stability for the static model, we can est imate that  the crack will be stable when 
the crack tip is at x = 85 and the cohesive zone size is 7 for this example. We 
guess that  the rupture  stops when the crack tip reaches around the point 
x = 85. The cohesive zone spreads after the crack tip crosses into the region 
where T O = Tf .  Inside the region of r o = Tf ,  the size of the cohesive zone remains 
constant as the crack grows. 

Case 3 (Asperity Model). As shown in Figure 5, the asperity is the region 
between two cracks. The strength in the region I x l > 80 is infinite. In this 
example, the rupture  starts  at  both sides of the asperity. When the rupture 
fronts from both sides reach to the center of the asperity, the asperity is 
completely broken. However, the slip on the fault  plane continues until the 
region made up of two initial cracks and the asperity is completely broken. 

Displacement and Slip Velocity on the Fault Plane 

If a cohesive zone does not exist, the displacement on the fault plane is 
proportional to H(t )v~  at the rupture front, and the slip velocity has a 

CASEI 

p 

CASE 2 
t 

f 

x 0 50 

FIG. 6. 

CASE 3 

o so  0 5O 

Locations of cohesive zones. 
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singularity of H(t)/~f[. If a cohesive zone does exist, such a singularity is 
weakened in proportion to the cohesive zone size. For case 1 (Fig. 7), the slip 
velocity has a discontinuity of H(t) form due to the stopping phase if cohesive 
zone does not exist. Such a discontinuity is weakened by the cohesive zone 
effect. The cohesive zone effect used here means the effect of the cohesive zone 
on seismic waves radiated as a so-called stopping phase. For case 2 (Fig. 8), 
since the rupture  velocity changes continuously, there do not appear to be 
phases corresponding to the stopping phase in case 1. The slip velocity in case 2 
changes more smoothly than in case 1. For case 3 (Fig. 9), the slip velocity has 
peaks due to phases radiated when the asperity is completely broken. However, 
the slip velocity does not include a step-function form. 

Near-Field Displacement and Velocity 
Madariaga (1983) obtained an analytic solution for the semi-infinite an- 

tiplane shear crack without  a cohesive zone. He also discussed the high- 
frequency radiation due to discontinuities in strength and that  due to variations 
in stress intensity. He considered a semi-infinite crack, while our calculations 
are for a finite crack. We cannot, therefore, compare all seismic phases but  only 
individual phases radiated by the discontinuities in rupture velocity and dy- 
namic stress drop. 

According to the analytic solution obtained by Madariaga (1983), the velocity 
waveform for case 1 has a discontinuity proportional to H(t) due to the stopping 
phase if a cohesive zone does not exist. Because of this discontinuity, the 
spectral shape of the seismic wave follows the ~-2-model. As the model we used 
here has a cohesive zone, this discontinuity is weakened (Fig. 10). The size of 

CASE I 

DISPLACEMENTS SLIP VELOCITIES 

/ 
(10,0) 

(20,0) / 

(30,0) 

(40,0) / 

(50,0) 

(60,0) 

2222 
loo t o lOO t 

FIG. 7. Displacements and sl ip velocit ies on the fau l t  plane for case 1. The sl ip velocit ies are 
obtained f rom f in i te  differences of the displacements. Smal l  negative-spikes seen in  the veloci ty  
waveforms are caused numer ica l  noise. 
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CASE 2 

DISPLACEMENTS SLIP  VELOCITIES 

( 0 , 0 )  

(10 ,0)  

(20,0)  

(30,0)  

(40,0) 

(50,0) 

(60,0)  

i 

, / ,  
10o t 

i , , i  , , 

o lOO t 

FIG. 8. Displacements and slip velocities on the fault plane for case 2. 

CASE 3 I 

DISPLACEMENTS ISLIP IVELOCITIES 

I 

(20 ,0 ) ,  , /  , , , 

(6o,o) 

o lOO t lOO t 

FIG. 9. Displacements and slip velocities on the fault plane for case 3. 

the  cohesive zone becomes smal le r  t h a n  L c w h en  the  r u p t u r e  arrests .  Therefore ,  
the  effect of the  cohesive zone is res t r ic ted  to a h ighe r  f requency  t h a n  t h a t  
expected f rom the  s ta t ic  condit ion.  For  cases 2 and  3 (Figs. 11 and  12), the  
veloci ty waveforms  have  no s tep-funct ion discont inui t ies .  This  m ean s  t h a t  the  
seismic waves  r ad ia t ed  in cases 2 and  3 do not  follow the  scaling law of the  
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CASE 1 

DISPLACEMENTS VELOCITIES 

( O, 50) 

0 100 ~ t  t 

' ( 3 0 , 5 0 )  

0 100 t 0 100 ~ t 

(5o.5o) 

100 t 100 t 

(80,50) 
I 
i 

100 t 100 t 

FIG. 10, Near-field displacements and velocities for case 1. The velocity wave has discontinuities 
due to the stopping phase. However, these discontinuities are weakened by the existence of cohesive 
zones. 

CASE 2 

DISPLACEMENTS 

( O, 50) 

VELOCITIES 

100 t 0 100 t 

(30,50) 

0 100 t 

(50,50) 

100 t 

(80,50) 

0 100 t 

100 t 

L 
0 100 t 0 100 t 

FIG. 11. Near-field displacements and velocities for case 2. 

~o-e-model. Therefore,  in order to discuss fmax under  the  condit ion that  the  
seismic radiat ion should  fol low the  o~-2-model, we have  to consider case 1. The 
seismic waves  radiated in cases 2 and 3 are less important  than  those  in case 1, 
if we restrict our interest  to fmax" However ,  w h e n  a lower frequency than  fm~x 
is studied, it is important  to consider cases 2 and 3. 
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CASE 3 

DISPLACEMENTS VELOCITI ES 

I (0,50) 

' , 
o 16o ~ ~oo t 

(30,50) 

100 t 

( so, 5o) 

100 t 100 t 

(80,50) 

100 ~ 0 100 t 

100 't 

FIG. 12. Near-field displacements and velocities for case 3. 

DISCUSSION AND CONCLUSIONS 

In our simulation, we showed tha t  the seismic waves that  have fmax and 
follow the scaling law of the ~0-2-model are only radiated in case 1. Following 
Papageorgiou and Aki (1983) and Aki (1985), the relation between rupture 
velocity V(t), cohesive zone size D(t), and fmax is obtained for case 1: 

fmax---- V(to)/D(to), (i2) 

where t o is the time tha t  the stopping phase is radiated. 
According to our results, D(t) is inversely proportional to the crack size. 

Therefore 

D(t) = Lc2/L(t).  (13) 

L c is the maximum cohesive zone size and L(t) is the crack size at time t. From 
(12) and (13), we obtain 

&ax = V(to)L( to) /Lc  2. (14) 

This relation is obtained from a restricted model for a two-dimensions 
antiplane. However, it is expected tha t  a similar relation holds for three- 
dimensional models. Using (14), w e a t t e m p t  to explain the observed fm~x" 

At first, we assume tha t  both large earthquakes and small earthquakes 
consist of a single crack. If the initial crack sizes are the same, then the fma~ of 
the large earthquake will be high. However, observed fma~ only slightly de- 
pends on earthquake size (e.g., Faccioli, 1986; Fujiwara et al., 1989). The fmax'S 
of large earthquakes are a little lower than  those of small earthquakes. There- 
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fore, in order to explain observed fm~ by the single crack model, it must be 
assumed that Lc's are different between large earthquakes and small earth- 
quakes. We need to consider that large earthquakes have large initial cracks 
and small earthquakes have small initial cracks. 

Another model is obtained if we assume that an earthquake consists of a set 
of inhomogeneities. These inhomogeneities include cases 1, 2, and 3. In the 
rupture process, cases 1, 2, and 3 locally appear many times. In this model, the 
high-frequency seismic waves related to fm~ are locally radiated when small 
cracks temporally stop at barriers. Lower-frequency contents than fma~ are 
radiated when asperities are broken. The asperities behave as barriers until 
they are eventually broken. In this model, fma~ only relates to cohesive zone 
sizes of small cracks. Therefore, if the distribution of these cracks and asperities 
is independent of source size, then f~.~ will be nearly constant for all 
earthquakes. 
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